Многоугольные рамки для фото и картин

МногоугольныеМногоугольные — в этой статье рассмотрим вопрос изготовления рамок, которые в некотором роде связаны с многоугольными формами. Лучше всего начать с того, что нужно вспомнить из далекой начальной школы, что такое многоугольник.

Многоугольные и математика для них

  • Плоские замкнутые ломаные линии — общий случай;
  • Плоские замкнутые ломаные линии без самопересечений — простые многоугольные;
  • Часть плоскости, ограниченная замкнутыми ломаными линиями без самопересечений.

На рисунке ниже: (а) пятиугольник; (b) шестиугольник; (c) не является многоугольником, потому что он не замкнут; (d) не является многоугольником, потому что есть линии самопересечений; и (e) не является многоугольные, так как не все его линии являются прямыми. многоугольник Виды многоугольников, с разным числом ребер и их имена показаны на рисунке ниже. рамки для фото своими руками

Многоугольные формы

Обычные многоугольники имеют свойство, они находятся в кругу, который называется окружностью и соприкасается со всеми вершинами многоугольника. Центром правильного многоугольника всегда является центр его круга.

Допустим, что наш многоугольник имеет количество углов = N, круг имеет всегда 3600 и градус угла определяем из формулы 3600/N.

Например, шестиугольник имеет N=6 углов и образует угол в центре круга равный 3600/6 = 600.

Внутренние углы нашего многоугольника одинаковы и равны 1800( N-2 )/N градусов.

Например, внутренние углы квадрата равны 1800( 4-2 )/4 = 900; у восьмиугольника 1800( 8-2 )/8 = 1350.

По мере увеличения числа ребер в многоугольнике, длина ребра будет уменьшаться и в конечном итоге они сойдутся в одну окружность.

Некоторые изделия, имеющие многоугольную форму, без изменения размеров сторон показаны на рисунке ниже. Шкатулка имеет форму восьмиугольника, рамки для зеркала, которые имеют прямоугольную и шестиугольную формы. Разделочная доска, не правильный многоугольник, он состоит из двух форм, квадрата и восьмиугольника. красивые рамки для фотоНекоторые изделия, имеющие многоугольную форму, с изменением размеров сторон показаны на рисунке ниже. Ваза имеет семь сторон с наклоном в наружу, то есть снизу вверх, настольная лампа, наоборот, имеет наклон во внутрь с шестью сторонами. рамки для картин
Дальше рассмотрим ряд некоторых математических аспектов для многоугольников, которые нужны при расчете многоугольных изделий.

Равносторонний многоугольник.

Главными переменными на многоугольные формы есть внутренние углы, длина ребер, и площадь изделия. Как видно из рисунка сегмент N-углов вписан в две окружности, обозначим их, как внутренний и внешний круг. Обозначим три стороны треугольника (стороны R, r, и l) его стороны образованы радиусами и ребром, обозначим три угла, которые расположены в треугольнике (А1, А2 и А3). Между концами этих радиусов внутри двух кругов проведем линию с одной конечной точкой в месте касания к внутреннему кругу и другой точкой в месте касания к внешнему кругу. рамка для картиныРадиус — отрезок, соединяющий центр окружности с любой точкой, лежащей на окружности, а также длина этого отрезка R. Радиус составляет половину диаметра 2R.

Угол A1 составляет половину центрального угла и равен 1800/N  для N-углов. Угол А2 = 900, потому что радиус круга (r) касается к сегменту (l) под прямым углом.

Это означает, что угол А3 и радиус (R) есть составляющие угла А1 и поэтому А3=9001=900(N-2)/N. который является половиной внутреннего угла.

Две стороны определяют третью сторону треугольника, потому что R2=r2+l2. Определим стороны r и l по отношению к углу А1: r=Rcos А1 и l=Rsin А1.

Определим длину ребра L: L=2l=2Rsin А1, это формулы определения градусов в N-углах. [su_note note_color=»#c3f8a3″ radius=»6″].

Пример: Рассмотрим пятиугольник имеющий длину стороны L=1 дюйм. Угол А1=1800/5=360, угол А2=900-360=540.

Пятиугольник лежит внутри окружность радиуса R=L/(2sin А1)=1/(2sin 360)=0,85 дюйма.

Пример: Рассмотрим шестиугольник, внутренний круг, имеет диаметр 1,7 дюйма. Определяем радиус окружности R=1,7/2=0,85 дюйма. Угол А1=1800/6=300 и угол А3=600. Длина ребра равна L=2Rsin=1.7sin300=0,85 дюйма.[/su_note]

Углы А1 и А3 важны в создании формы правильного многоугольника и они отмечены в таблице для:

квадрата, пятиугольника, шестиугольника, восьмиугольника.

N угловцентральный уголвнутренний уголA1A3
 4 90 90 4545
 5 72 108 36 54
 6 60120 30 60
 8 45 135 22,5 67,5

Разносторонние многоугольные.

 Разносторонние многоугольники — те, которые имеют стороны не равной длины. Примеры угловых шкафов на рисунке ниже. Здесь углы и ребра разной длины и зависят от конкретных условий.

фоторамки из дерева

Те, кому интересна тригонометрия,  формулы и примеры:

http://dls-website.com/documents/WoodworkingNotes/Compound%20Miters.pdf http://www.woodcentral.com/bparticles/miter_formula.shtml http://www.woodworkersguildofga.org/ShopHelpers/CompoundMiterTable.pdf Также существует программа написанная на языке Frink, которая позволяет делать расчеты для углов многоугольников на настольных компьютерах и смартфонах, Android-ах и iPhon-ах, она работает с компьютерами на платформе Андроид. Frink — компьютерный язык-программирования, на котором написана программа. Сама программа расположена по адресу: http://dls-website.com/documents/WoodworkingNotes/Compound%20Miters.pdf, там же описание программы и ее настройки. Инструкции по использованию языка-программирования можно получить бесплатно с сайтов: https://play.google.com/store/search?q=Frink+programming+language&c=apps и http://futureboy.us/frinkdocs/frinkframe.html . Один из способов реализовать использование языка-программирования Фринк, это загрузить его в настольный компьютер, который будет использоваться. После того как приложение заработает в среде рабочего стола, его можно будет отправить в сотовый телефон по проводному или беспроводному соединению. После загрузки в телефон, «приложение» может быть использовано там, как калькулятор. Онлайн калькуляторов расчета углов, для многоугольников,в интернете тоже предостаточно:
http://www.woodworkersguildofga.org/ShopHelpers/MiterCalculator.htm
http://jansson.us/jcompound.html
http://www.pdxtex.com/canoe/compound.htm

Торцовочное приспособление на многоугольные.для каждой стороны Торцовочное приспособление необходимо в различных проектах многоугольников, имеющих наклонные стороны. Ниже на рисунке показаны два необходимых реза под углом на циркулярном станке. Один из них создает углы торцов изделия, которые соединяют стороны многоугольника между собой, а другой рез создает углы наклона во внутрь или в наружу для каждой стороны, смотрите рисунок ниже.

Многогранники

Многогранники

Многоугольники являются двухмерными изделиями. Закрытые трехмерные изделия могут быть изготовлены из них путем присоединения многоугольников вдоль их краев. Объекты, полученные таким образом, называются многогранники. Куб полученный соединением шести квадратов является примером многогранника. Другим примером является додекаэдр, он показаны на рисунке слева  и на рисунке ниже: (а) античная многогранная шкатулка; (б) додекаэдрическая система динамиков; (с) додекаэдрические солнечные часы, они построены из двенадцати одинаковых пятиугольников. додекаэдрпятиугольная граньКаждая пятиугольная грань составляет 0,5 дюйма толщиной красного дерева с использованием шаблона метод резки на рисунке ниже.

Важное значение в построении многогранников имеют скошенные уголки его многоугольных граней, детальнее: http://dls-website.com/documents/PolyhedralSundials.pdf

Если Вы остались довольны данным материалом, подпишитесь на рассылку и получайте извещение о новой статье на сайте. Буду Вам очень признателен!

Рассылки на: Subscribe.Ru
Подпишитесь и анонсы постов придут к Вам на e-mail

Спасибо!

Метки: , , , , , . Закладка Постоянная ссылка.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *